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A new grid-less (no collocation) spectral projection method is presented. The
unsteady Navier–Stokes equations are approximated according to the variational
framework of Guermond and Quartapelle which accommodates two vector spaces
for the velocity fields obtained in the two half-steps of the fractional-step method
but retains only one in the final solution algorithm. Two different bases built on
Legendre polynomials are used for the velocity and pressure to solve the cor-
responding Helmholtz and Poisson equations by direct spectral elliptic solvers.
InterpolationsPN andPN−2 are employed for velocity and pressure to satisfy the
LBB stability requirement and a Gauss–Legendre quadrature formula with3

2 N
integration points is used to prevent aliasing error in the pseudospectral evaluation
of the nonlinear terms. A BDF second-order time stepping is implemented to pro-
vide accurate numerical results about the stability of the singular driven cavity
problem. c© 2002 Elsevier Science

Key Words:Navier–Stokes equations; projection method; Galerkin–Legendre
spectral methods.

1. INTRODUCTION

The first spectral version of the fractional-step method to solve the incompressible Navier–
Stokes equations in the presence of rigid walls was proposed by Gottlieb and Orszag [17]
nearly one decade after the projection method was introduced by Chorin [14, 15] and Temam
[38] in a finite difference context. In this spectral implementation by thetau method, the
projection step was performed through a Poisson equation for the pressure before executing
the advection–diffusion step, with the nonlinear term evaluated explicitly. Noticeably, the
inviscid character of the projection step was taken into account by imposing a boundary
condition in this step only on the normal component of velocity [17, p. 146 and 147]. This
is in full accordance with Ladyzhenskaya’s decomposition theorem which underlies the
projection method and confers an essentially different character to the normal boundary
condition with respect to the tangential one(s); see also [37].
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The spectral projection method was further elaborated upon by Orszag and Kells, who
introduced the idea of a three-step scheme for 3D channel flow simulations [31]. In this
method, a purely convective step is performed first. Then, the obtained intermediate velocity
is projected onto a divergence-free space and finally a vector parabolic problem is solved,
enforcing the complete velocity boundary conditions for the viscous equation. The first two
steps are claimed to be second-order accurate in time while the last one is only first-order
accurate. This method was employed successfully to simulate the transition to turbulence in
Poiseuille and Couette flows between parallel planes. The spectral projection method was
later extended to incompressible flows with a variable viscosity by Zang and Hussaini [40];
see also [13, p. 222].

In subsequent studies, the Chorin–Temam projection method was implemented by Ku,
Taylor, and Hirsh according to a Chebyshev–collocation approach to compute steady so-
lutions in closed rectangular domains in two [27] and three [28] dimensions. A distinctive
feature of their method is the expression of the projection step in the form of a Darcy
problem, that is agrad-div coupled system for the pressure and velocity unknowns. The
discrete counterpart of the continuity equation is satisfied inside the domain as well as on
the boundary, in the sense of an assumed collocation scheme. In the words of the authors,
satisfying the continuity equation on the boundary provides the lacking boundary condition
for the pressure in the projection step. Apparently, the complete no-slip conditions are en-
forced on either the intermediate or the end-of-step velocity but not on both. In this respect,
such a procedure matches properly the aforementioned inviscid character of the projection
step and produces accurate two- and three-dimensional results. Also based on agrad-div
approach and on a Chebyshev–collocation spatial discretization is the splitting technique
proposed more recently by Heinrichs [23]. In this case, the Uzawa algorithm is employed in
the inviscid step, leading to a pseudo-Laplace equation for the pressure. This splitting has
been successfully extended to reach a third-order time accuracy by employing a suitable
pressure extrapolation in the first step [24, 25]. Heinrichs’ method has been also elaborated
upon by Botella [10] who proposed a third-order projection scheme employing Chebyshev
polynomials and Gauss–Lobatto collocation, with the incompressible step still expressed
in the form of a Darcy problem.

A mathematically more satisfactory treatment of spectral projection methods has been
achieved by resorting to the Galerkin variational formulation of the problem of the form
well established in the context of finite element approximations many years ago; see e.g.
Temam’s monograph [37]. Suitable spectral representations based on Legendre polynomials
have been introduced by Jie Shen to solve elliptic problems [34] and have been used
subsequently to build a Galerkin formulation of the projection method [35]. A second-
order version of this method for flows in closed cylindrical geometries has been proposed by
Lopez and Shen [30]. This method features a second-order BDF time stepping and is based
on the incremental scheme originally formulated by Goda [16] and Van Kan [39], where,
differently from Chorin–Temam original scheme, an explicit pressure gradient term appears
in the momentum equation. We notice that all the aforementioned higher-order projection
schemes make no distinction between the functional spaces in which the intermediate and
end-of-step velocities are to be represented.

The fractional-step idea has been pursued also to solve the unsteady version of the Stokes
problem with an increasing order of accuracy in time; see for instance the works by Batoul
et al.and by Karniadakiset al.[8, 26]. These spectral methods are however characterized by
a coupling between the viscous and incompressible steps through the boundary condition
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for pressure, and therefore they can hardly be put under the banner of the class of projection
methods.

Many different versions of projection methods have been proposed over the years, but a
rigorous analysis about their approximation and stability properties, encompassing both the
incremental and non incremental fractional stepping, has been established only recently [33,
35]. In particular, fully discrete projection methods for finite element spatial approximations
have been thoroughly investigated by Guermond and Quartapelle [18, 20, 21]. This analysis
has pointed out that the structural difference existing between the equations of the two (half)
steps requires the introduction of two different functional spaces for the intermediate and
end-of-step velocities which are endowed with different regularities, namelyH1 andHdiv,
respectively. Indeed, for instance, the normal component of the end-of-step velocity is
discontinuous at the element interfaces when standard Lagrangian elements are used. This
fact does not entail any difficulty insofar as the same analysis demonstrates that only the
intermediate velocity is present in the final solution algorithm, leading to a computer code
of the utmost simplicity. These ideas have been further exploited recently by Guermond
in a new second-order accurate finite element projection scheme, based on a BDF time
discretization for which unconditional stability is obtained through a semi-implicit treatment
of the nonlinear term [19].

In this paper we implement the incremental projection method of Guermond and
Quartapelle [18, 19, 20, 21] using the second-order BDF time stepping and we introduce
an original mixed spectral representation of the Navier–Stokes equations by means of
Legendre polynomials. The proposed scheme is similar to the projection method of Lopez
and Shen [30] based on Galerkin–Legendre (–Chebyshev) representation and second-
order BDF scheme. However, our scheme closely follows Guermond’s ideas and analysis,
namely, the elimination of the end-of-step velocity, thus getting rid of the low regularity
of the Hdiv space to which such a velocity field belongs. This elimination entails con-
sequences also in the spectral case where the approximate velocity belongs to the space
PN ⊂ C∞, so that the difference of the two velocity spaces must be taken into account to
avoid encountering mathematical difficulties [18]. Another element of distinction of the
proposed method is that two different polynomial bases are employed to represent the
velocity and pressure fields in order to permit the separation of variables in the numeri-
cal solution of both the Dirichlet and Neumann boundary value problems for velocity and
pressure.

By employing the Galerkin–Legendre spatial discretization and separation of variables
proposed in [34], and thanks to the simplicity of the considered projection method, we are
able to construct an algorithm that is required to solve, at each time step, Helmholtz and
Poisson equations by means of double-diagonalization direct solvers [3]. Characteristic
properties of the method are the absence of any grid in the approximation of the linear
problem, with all of the discrete spatial operators being evaluated exactly and most of
them in closed form, and the banded structure assumed by most of such operators which
allows efficient matrix multiplication in the solution algorithm. As far as the nonlinear
terms are concerned, the pseudospectral technique is adopted with the aid of the primitive
Gauss–Legendre quadrature points. The noncollocative character of the proposed method
has two implications: (i) the LBB condition can be satisfied quite naturally by selecting two
different polynomial orders for velocity and pressure, thus preventing the occurrence of
spurious pressure modes; (ii) aliasing errors in the nonlinear term are avoided by resorting
to a quadrature formula of an appropriate order, such as the well-known3

2 N rule. By the way,
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it is useful to note that the method extends immediately to three dimensions by employing
the 3D fast spectral Dirichlet solver given in [4] and the corresponding algorithm for the
Neumann problem.

The paper is organized as follows. In Section 2, the mathematical problem is stated in
strong form and, after introducing the Legendre spatial approximations, a semi-discrete
variational counterpart of the problem is derived. In Section 3, the second-order BDF incre-
mental projection method is presented and the corresponding fully discrete weak problem
is given. Section 4 details the various matrices representing the one-dimensional spatial
differential operators according to the mixed basis Galerkin–Legendre formulation pro-
posed in the work. Moreover, the Gauss–Legendre-based pseudospectral treatment of the
nonlinear terms is described. In Section 5, some numerical tests are presented to verify the
predicted error estimates and to assess the efficiency properties of the spectral solver against
a stability investigation of the singular driven cavity problem. Finally, Section 6 is devoted
to the concluding remarks.

2. FORMULATION OF THE PROBLEM

2.1. The Navier–Stokes Equations

We consider the time-dependent incompressible Navier–Stokes equations formulated in
terms of velocityu and pressurep. The complete mathematical statement of the problem
is: Findu and p (up to a constant) so that


∂u
∂t
− ν∇2u+ (u ·∇)u+∇p = f ,

∇ · u = 0,
u|∂Ä = 0,
u|t=0 = u0,

(2.1)

whereν is the viscosity,f is a known body force, andu0 is the divergence-free initial velocity
field. For simplicity, we assume homogeneous boundary conditions. The fluid domainÄ is
assumed to be the open square (−1,+1)2. The data are assumed to be regular enough and
to satisfy all the compatibility conditions needed for a smooth solution to exist for all time;
cf., e.g., [32].

2.2. Legendre Spectral Approximation

To build a spectral approximation of problem (2.1) we introduce the finite dimensional
spaceXN = (PN ⊗ PN)

2. We shall approximate the velocity inX0,N = XN ∩ H1
0(Ä), and

the pressure inMN̂ = PN̂ ⊗ PN̂ , the pressure field being understood to be defined up to
an additive constant. The polynomial orderN for the velocity is in general different from
the polynomial orderN̂ for the pressure. HereH1

0(Ä) is the standard notation for the
Sobolev space of vector-valued functions square integrable and with square integrable first
derivatives onÄ and with zero trace on∂Ä.

To recast (2.1) in a weak form by the Galerkin–Legendre spectral method, we consider
two different bases for approximating velocity and pressure.
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FIG. 1. Left: functions of the Legendre basisL∗n (x), n = 0, 1, 2, . . . , for Dirichlet boundary conditions.
Right: functions of the Legendre basisL♦n̂(x), n̂ = 0, 1, 2, . . . , for natural boundary conditions.

Since the velocity field satisfies Dirichlet conditions, we adopt the basis introduced by
Jie Shen in [34],

L∗0(x) = 1

L∗1(x) =
x√
2

(2.2)

L∗n(x) =
Ln−2(x)− Ln(x)√

2(2n− 1)
, n ≥ 2,

whereLn(x), n ≥ 0, are Legendre polynomials. This basis includes the first two modes for
imposing nonhomogeneous Dirichlet conditions by means of a (numerical) lifting described
in details in [3]. In practice we have

X0,N = [span{L∗m(x)L∗n(y) : 2≤ m≤ N, 2≤ n ≤ N}]2. (2.3)

The first few functionsL∗n(x) are shown on the left in Fig. 1. This basis generates sparse
stiffness and mass matrices. More specifically, the restriction toX0,N of the stiffness matrix
is the identity matrix, while the mass matrix is pentadiagonal symmetric with only three
codiagonals different from zero. The nonzero elements of the mass matrix are given in [3]
and [34].

As far as the pressure approximation is concerned, since this unknown in the fractional
step projection method satisfies Neumann boundary conditions, a convenient basis for
the two-dimensional problem is obtained by the direct product of the standard Legendre
polynomials. This basis is normalized so as to obtain a mass matrix coincident with the
identity matrix:

L♦n̂(x) =
√

n̂+ 1
2, Ln̂(x), n̂ ≥ 0. (2.4)

The first few functionsL♦n̂(x) of the basis for Neumann conditions are shown on the right
in Fig. 1. In this basis, the mass matrix is simply the identity while the stiffness matrix
is full, and is evaluated exactly (within roundoff error) by means of the Gauss–Legendre
numerical quadrature.
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The velocity and pressure fields representing the approximate solution to the Navier–
Stokes problem (2.1) are expanded in the double series,

uN(t, x, y) =
N∑

n=2

L∗n(x),Un,m(t), L∗m(y),
N

m=2

, (2.5)

pN̂(t, x, y) =
N̂∑

n̂=0

L♦n̂(x), Pn̂,m̂(t), L♦m̂(y),
N̂

m̂=0

, (2.6)

where the symbol is used to distinguish the summation on the second index from the
summation on the first one, following the notation proposed in [3]. This manner of indi-
cating the two different summations is particularly convenient to represent the action of
spatial differential operators along the directionsx andy. In fact, the corresponding one-
dimensional operators are represented by square matrices that pre- and postmultiply the
arraysU andP of the Legendre coefficients of velocity and pressure.

The choice of the two different bases for velocity and pressure is motivated on the one
hand by the need to impose essential boundary conditions for the viscous step and natural
boundary conditions for the projection step, and on the other hand, by the aim to retain in
both cases the tensor product structure of the elliptic solvers, as will be made clear in the
following sections.

2.3. Semi-discrete Weak Spectral Equations

The approximate semi-discrete Navier–Stokes problem in weak form is the following.
For t ≥ 0, finduN ∈ C1([0, T ];X0,N), pN̂ ∈ C0([0, T ];MN̂) such that, for allvN ∈ X0,N

and allqN̂ ∈ MN̂ ,

(
vN, uN(t = 0)

) = (vN, u0
)(

vN,
∂uN

∂t

)
+ ν(∇vN,∇uN

)+ (vN, (uN ·∇)uN
)+ (vN,∇pN̂

) = (vN, f
)

N(
qN̂,∇ · uN

) = 0,

(2.7)

where (·, ·) denotes theL2(Ä) inner product, while (·, ·)N indicates a suitable approximation
of the L2(Ä) inner product for the source term, evaluated by means of a Gauss–Legendre
quadrature formula.

It is known that the well posedness of the discrete problem depends on the satisfaction
of a compatibility condition between the approximation spaces for the velocity and the
pressure, calledinf-supcondition or LBB compatibility condition from Ladyzhenskaya,
Babuška and Brezzi [7, 12, 29]. In this work, theinf-supcondition has been satisfied by
assumingN̂ = N − 2, indeed we have the following result (see Bernardi and Maday [9]):

LEMMA. WhenN̂ = N − 2, there isβ > 0 such that

∀qN̂ ∈ MN̂, ∃vN ∈ X0,N,vN 6= 0: (qN̂,∇ ·vN) ≥ βN−1/2‖qN̂‖0‖vN‖H1(Ä). (2.8)

If the fieldsu(·, t)andp(·, t), exact solution of problem (2.1), own the regularity ofHσ (Ä)

and Hσ−1(Ä), respectively,σ ≥ 1, then the solution (uN, pN̂) of the weak approximate
problem (2.7) converges to the exact solution with a rate equal toσ (resp.σ − 1) in theL2

(resp.H1) norm, as stated by the following estimates:
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THEOREM. WhenN̂ = N − 2, we have

‖u− uN‖L∞(0,T;L2(Ä)) ≤ cN−σ
{‖u‖W1,∞(0,T;Hσ (Ä)) + ‖p‖W1,∞(0,T;Hσ−1(Ä))

}
, (2.9)

and

‖u− uN‖L∞(0,T;H1(Ä)) + N−1/2‖p− pN̂‖L∞(0,T;L2(Ä))

≤ cN1−σ{‖u‖W1,∞(0,T;Hσ (Ä)) + ‖p‖W1,∞(0,T;Hσ−1(Ä))

}
. (2.10)

In this theorem,Hs(Ä) (Hs(Ä)) denotes the Sobolev space of scalar (vector) functions
which are square integrable overÄ and whose derivatives are also square integrable over
Ä up to orders;W1,∞(0, T; Hs(Ä)) denotes the space of functions which are absolutely
integrable in any power, together with their first time derivative, on the interval(0, T) and
areHs(Ä) in space for each time in(0, T).

3. THE SECOND-ORDER BDF SPECTRAL PROJECTION METHOD

The projection method is a time-marching algorithm composed of two separate substeps
aiming at decoupling the effect of viscosity from the incompressibility constraint. At each
time step, an intermediate velocity is computed by advancing in time the momentum equa-
tion with the pressure gradient term omitted. The end-of-step velocity is then obtained by
projecting such an intermediate velocity onto the space of divergence-free vector fields with
zero normal component on the boundary and determining an approximation of the pressure
field. The incremental version of the projection method (also known as pressure correction
method) consists in making explicit the pressure at the viscous step and correcting it at
the projection step, while still retaining the complete uncoupling of viscous diffusion from
incompressibility constraint.

According to the theoretical analysis given in [21], the incremental version, using a
Galerkin spatial approximation and a first-order Euler time stepping, is more accurate than
the nonincremental one for any value of the time step. In fact, the incremental fractional-
step method is characterized by a time-splitting error ofO((1t)2). This property can be
exploited in order to develop a second-order projection method by introducing a suitable
second-order accurate time discretization.

In this work, we consider the scheme based on the second order BDF (Backward Dif-
ference Formula), which has been introduced and studied thoroughly by Guermond [19].
Here this scheme is applied in the context of the proposed Galerkin–Legendre spatial ap-
proximation.

3.1. BDF Incremental Time Discretization

For generality of the final solution algorithm, hereafter we consider nonhomogeneous
boundary conditions for the velocity of the formu|∂Ä = b, where the velocity datumb is
assumed to satisfy the global incompressibility constraint

∫
∂Ä

n · b= 0.
Usingk to denote the time index, two sequences of approximate velocities(uk)k≥0 and

(ûk)k≥1 are sought for. We set nowu0 = u0 and assume that an initial pressure fieldP0
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is available or can be evaluated as the steady state1 pressure associated with the initial
velocityu0.

Let us consider the time steps fork ≥ 1, leaving the first step,k = 0, for later discussion.
The BDF incremental projection method consists in solving the following two problems.

First, consider the diffusion step


3uk+1− 4i ·trûk+ i ·trûk−1

21t
− ν∇2uk+1 = f k+1− (uk+1

? ·∇)uk+1
? −∇pk,

uk+1|∂Ä = bk+1,

(3.1)

where we have introduced the linearly extrapolated velocityuk+1
? = 2uk − uk−1.

Then, perform the projection step in the following second-order incremental form:
3

2

ûk+1− i uk+1

1t
+ ∇̂(pk+1− pk) = 0,

∇̂ · ûk+1 = 0,

n · ûk+1|∂Ä = n · bk+1.

(3.2)

In the projection step (3.2) appears the injection operatori from H1
0(Ä) into the space

Hdiv
0 (Ä) = {v̂ ∈ L2(Ä) | ∇̂ · v̂ ∈ L2(Ä), n · v̂|∂Ä = 0},

which has the correct regularity for the velocity field obtained in the (inviscid) projection
step. Correspondingly, in the viscous problem (3.1) there is the transpose operatori ·tr. The
expression∇̂· : Hdiv

0 (Ä)→ L2(Ä) is an extension of∇· : H1
0(Ä)→ L2(Ä) in the sense

that we have the remarkable property:

∇̂ · i =∇ · and i ·tr∇̂ =∇.

This distinction may seem unduly pedantic in the context of the spatially continuous prob-
lem, but it proves to be of the utmost importance when it comes to discretizing the equations
in space; for details see [21].

By applying∇̂· to the first equation of (3.2), we obtain the following Neumann problem
for the Poisson equation for the increment(pk+1− pk),

−∇̂2(pk+1− pk) = − 3
21t∇ · uk+1,

∂(pk+1− pk)

∂n

∣∣∣∣
∂Ä

= 0,
(3.3)

where we have used̂∇ · i =∇·.
In the first time step(k = 0), the incremental projection scheme based on the two-level

Euler time discretization is exploited to determine the first velocityu1 and pressurep1. This

1 This assumption breaks down in the case of an impulsive start whenevern · b 6= 0 at the initial time on (part
of) the boundary; for details see [32, Section 1.2].
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means solving the viscous diffusion problem
u1− u0

1t
− ν∇2u1 = f 1− (u0 ·∇)u0−∇p0,

u1|∂Ä = b1,

(3.4)

and the incremental Poisson problem


−∇̂2(p1− p0) = −(1t)−1∇ · u1,

∂(p1− p0)

∂n

∣∣∣∣
∂Ä

= 0,
(3.5)

so that the first end-of-step velocity is given byû1 = i u1−1t∇̂(p1− p0).
As anticipated, the end-of-step velocity can be profitably eliminated from the algorithm.

The elimination in the BDF method requires paying special attention to the two steps with
k = 1 andk = 2. In fact, the first end-of-step velocity iŝu1 = i u1−1t∇̂(p1− p0) and
its elimination gives expressions for the extrapolated pressure in the second and third time
stepsk = 1 andk = 2 different from that valid at all other subsequent time steps withk ≥ 3.
A direct calculation leads to the following equation of the viscous step fork ≥ 1, with the
end-of-step velocity eliminated,

3uk+1− 4uk + uk−1

21t
− ν∇2uk+1 = f k+1− (uk+1

? ·∇)uk+1
?

−


∇(3p1− 2p0) if k = 1
1
6∇(14p2− 11p1+ 3p0) if k = 2

1
3∇(7pk − 5pk−1+ pk−2) if k ≥ 3

(3.6)

uk+1|∂Ä = bk+1.

3.2. Fully Discrete Equations

By introducing the finite dimensional spacesX0,N and MN̂ , we recast the BDF incre-
mental projection algorithm in weak form. The nonhomogeneous Dirichlet condition for
the velocity is taken into account by means of a lifting described thoroughly in [3]. This
means that the solutionuk+1

N is expressed in the form

uk+1
N = ubk+1,N + uk+1

0,N . (3.7)

Here, the first termubk+1,N ∈ XN and is such thatubk+1,N|∂Ä ≈ bk+1 in the sense of the
L2(∂Ä) projection (but for the corner values, which are imposed exactly) while the second
term uk+1

0,N belongs toX0,N and satisfies the equation governinguk+1
N with the right-hand

side perturbed by the lifting. The latter is implemented numerically through the “extended”
mass matrixM∗; for details see [3].

Considering, for instance, the general viscous step valid fork ≥ 3, we have the weak
problem:
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For k ≥ 3, finduk+1
0,N ∈ X0,N such that, for allvN ∈ X0,N ,(

vN,
3uk+1

0,N − 4uk
N + uk−1

N

21t

)
+ ν(∇vN,∇uk+1

0,N

)
=− 3

21t

(
vN, ubk+1,N

)− ν(∇vN,∇ubk+1,N

)+ (vN, f
k+1)

N
(3.8)

− (vN, (u
k+1
?,N ·∇)uk+1

?,N

)− 1

3

(
vN,∇

(
7pk

N̂ − 5pk−1
N̂
+ pk−2

N̂

))
.

Still choosingXN + ∇̂MN̂ as the functional space for the end-of-step velocity,ûk+1, the
weak form of the projection step of the BDF method reads:

For k ≥ 1, find(pk+1
N̂
− pk

N̂
) ∈ MN̂ such that, for allqN̂ ∈ MN̂ ,

(
∇̂qN̂, ∇̂

(
pk+1

N̂
− pk

N̂

)) = − 3

21t

(
qN̂,∇ · uk+1

N

)
. (3.9)

IntroducingL∗n(x)L
∗
m(y), 2≤ (n,m) ≤ N, [resp.L♦

N̂
(x)L♦m̂(y), 0≤ (n̂, m̂) ≤ N̂] as test

functions in Eq. (3.8) [resp. (3.9)] the two substeps are expressed in matrix form as

Uk+1
0 M∗ + M∗Uk+1

0 + γM∗Uk+1
0 M∗ = Fk+1, (3.10)

D♦(Pk+1− Pk)+ (Pk+1− Pk)D♦ = Gk+1, (3.11)

whereγ = 3/(2ν1t). In Eq. (3.10)M∗ is the mass matrix associated with the basisL∗n, n =
0, . . . , N and, similarly, in Eq. (3.11)D♦ is the stiffness matrix associated with the basis
L∗n̂, n̂ = 0, . . . , N̂. Because of the symmetry ofM∗ and D♦, we have not indicated the
transposition of matrices that multiply on the right.

The right-hand sides of the two Eqs. (3.10) and (3.11) are defined, respectively, by

νFk+1
n,m =

1

21t

(
L∗n(x)L

∗
m(y), 4uk

N − uk−1
N

)+ (L∗n(x)L∗m(y), f k+1
)

N

− 3

21t

(
L∗n(x)L

∗
m(y), ubk+1,N

)− ν(L∗′n (x)L
∗
m(y),

∂ubk+1,N

∂x

)
− ν
(

L∗n(x)L
∗′
m(y),

∂ubk+1,N

∂y

)
− 1

3

(
L∗n(x)L

∗
m(y),∇

(
7pk

N̂ − 5pk−1
N̂
+ pk−2

N̂

))
− (L∗n(x)L∗m(y), (uk+1

?,N ·∇)uk+1
?,N

)
, (3.12)

Gk+1
n̂,m̂ = −

3

21t

(
L♦n̂(x)L

♦
m̂(y),∇ · uk+1

N

)
. (3.13)

The evaluation of the terms involving the pressure gradient and the velocity divergence re-
quires the computation of integrals associated with “hybrid” scalar products of the type(
L∗n(x), L♦′n̂ (x)

)
and

(
L♦n̂(x), L∗′n (x)

)
, respectively. Moreover, these terms require also

the computation of “hybrid” mass matrices of the type
(
L∗n(x), L♦n̂(x)

)
and

(
L♦n̂(x), L∗n(x)

)
.

The profiles and elements of all these matrices will be given in Section 4.1. The nonlinear
terms are evaluated by means of the pseudospectral technique based here on the Gauss–
Legendre quadrature and resorting to the 3N/2 rule to ensure exact integration of the
quadratic nonlinearities, as described in Section 4.2.
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The solution of the algebraic systems (3.10) for the velocity components is obtained
by means of a direct fast Helmholtz solver based on the eigen-decomposition of the mass
matrices in the two spatial directions; see [3], and [4] for the 3D case. The solution of
the pressure system (3.11) is obtained by an analogous fast spectral Poisson solver which
imposes the boundary condition in the standard natural way and is based on the eigen-
decomposition of the stiffness matrices.

4. GALERKIN–LEGENDRE MATRICES AND PSEUDOSPECTRAL TECHNIQUE

In this section we provide the explicit expressions of the various “hybrid” matrices, i.e.,
involving scalar products of pairs of functions belonging to the two different bases, that
occurr in the right-hand sides (3.12) and (3.13) of the algebraic systems of equations for
velocity (3.10) and pressure (3.11).

Moreover, we detail how to evaluate the nonlinear terms by means of a pseudospectral
technique ensconced in the integration points of Gauss–Legendre quadrature formulas.

4.1. Hybrid Matrices

Let us now consider the various hybrid matrices needed to evaluate the right-hand sides
of the momentum and pressure equations (3.12) and (3.13). The linear terms involving the
gradient and the divergence are rewritten here as{

H x
n,m

H y
n,m

}
= (L∗n(x)L∗m(y),∇qN̂

)
,

and

Gn̂,m̂ =
(
L♦n̂(x)L

♦
m̂(y),∇ · uN

)
.

We first consider thex-component of the term associated with the pressure gradient, namely,

H x
n,m =

N̂∑
n̂=0

a∗♦n,n̂, δPn̂,m̂,m
∗♦
m̂,m

N̂

m̂=0

,

where we introduced the hybrid (in general rectangular) matricesA∗♦ andM∗♦with elements
defined by

a∗♦n,n̂ ≡
∫ 1

−1
L∗n(x)L

♦′
n̂ (x) dx, 0≤ n ≤ N, 0≤ n̂ ≤ N̂,

m∗♦n,n̂ ≡
∫ 1

−1
L∗n(x)L

♦
n̂(x) dx, 0≤ n ≤ N, 0≤ n̂ ≤ N̂.

In matrix form, the contribution to the right-hand side of the velocity equation resulting
from the pressure gradient reads

H x = A∗♦δP(M∗♦)T and H y = M∗♦δP(A∗♦)T ,

where the superscriptT denotes the transposed matrix.
The matricesA∗♦ and M∗♦ display a sparse profile and their nonzero elements can be

evaluated in closed form. For instance, the generic element ofM∗♦, for n ≥ 2 andn̂ ≥ 2, is
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defined by

m∗♦n,n̂ = (L∗n, L♦n̂) =
(

Ln−2− Ln√
2(2n− 1)

, k(n̂)Ln̂

)
,

wherek(n̂) = n̂+ 1
2. Thanks to the orthogonality of Legendre polynomials, the only ele-

ments ofM∗♦ different from zero lie on the diagonalsn = n̂ or n = n̂+ 2; in fact,

m∗♦n̂,n̂ = −
√

n̂+ 1
2

2(2n̂− 1)

1

n̂+ 1
2

= − 1√
4n̂2− 1

, n̂ ≥ 2,

m∗♦n̂+2,n̂ =
√

n̂+ 1
2

2(2n̂+ 3)

1

n̂+ 1
2

= 1√
(2n̂+ 1)(2n̂+ 3)

, n̂ ≥ 2.

Thus, matrixM∗♦ is tridiagonal with only two diagonals different from zero

0 · · · · · · · · · N̂

M∗♦ =

0

1

2
...

N−2

N−1

N



b0

0 b1

a0 0
. . .

a1
. . .

. . .

. . .
. . . bN̂
. . . 0

aN̂


,

where

a0 = 1√
3
, an = 1√

(2n+ 1)(2n+ 3)
, n ≥ 1,

b0 =
√

2, bn = − 1√
4n2− 1

, n ≥ 1.

To calculate the elements ofA∗♦, it is useful to proceed by integrating by parts the generic
element, so that, beingL∗n(±1) = 0 if n > 2, we have, forn ≥ 2 andn̂ ≥ 0,

a∗♦n,n̂ =
(
L∗n, L♦′n̂

) = −(L∗′n , L♦n̂
)+ [L∗nL♦n̂

]∣∣1
−1 = −

(
L∗′n , L♦n̂

)
.

Using the properties of Legendre polynomials [36], we obtain

a∗♦n,n̂ = −
(√

n− 1
2

n(n− 1)

d

dx

[
(1− x2)

dLn(x)

dx

]
, L♦n̂(x)

)
=
(√

n− 1

2
Ln−1, k(n̂)Ln̂

)
,

which is different from zero only on the diagonal corresponding ton = n̂+ 1,

a∗♦n̂+1,n̂ =
√

n̂+ 1
2

√
n̂+ 1

2

n̂+ 1
2

= 1, n̂ ≥ 1.



MIXED-BASIS SPECTRAL PROJECTION METHOD 13

The elements belonging to the first two rows are defined, for 1≤ n̂ ≤ N̂, by

a∗♦0,n̂ = −
(
L∗′0 , L♦n̂

)+ [L∗0L♦n̂
]∣∣1
−1 =

[
k(n̂)Ln̂

]∣∣1
−1,

a∗♦1,n̂ = −
(
L∗′1 , L♦n̂

)+ [L∗1, L♦n̂
]∣∣1
−1 =

1√
2

[
xk(n̂)Ln̂

]∣∣1
−1 .

For the parity properties of Legendre polynomials, we have, forn̂ ≥ 1,

a∗♦0,n̂ =
{

0, n̂ even

−(n̂+ 1
2

)
, n̂ odd

and a∗♦1,n̂ =
{

0, n̂ odd

−√2
(
n̂+ 1

2

)
, n̂ even

Therefore, matrixA∗♦ presents the following structure,

0 1 · · · N̂

A∗♦ =

0

1

2
...

N−1

N



d0 d1 . . . dN̂

c0 c1 . . . cN̂

1
. . .

1


,

where

dn = 0, n even; dn = 2

√
n+ 1

2
, n odd;

c0 = 0, cn = 0, n odd; cn =
√

2n+ 1, n even≥ 2.

The evaluation of the right-hand side for the pressure problem is obtained in an analogous
way. In fact

Gn̂,m̂ =
N∑

n=0

∫ 1

−1
L♦n̂(x)L

∗′
n (x) dx Un,m

∫ 1

−1
L∗m(y)L

♦
m̂(y) dy

N

m=0

+
N∑

n=0

∫ 1

−1
L♦n̂(x)L

∗
n(x) dx Vn,m

∫ 1

−1
L∗′m(y)L

♦
m̂(y) dy

N

m=0

=
N∑

n=0

b♦∗n̂,n,Un,m,m
∗♦
m,m̂,

N

m=0

+
N∑

n=0

m∗♦n,n̂,Vn,m, b
♦∗
m̂,m,

N

m=0

,

where(U,V) = U and where the coefficients

b♦∗n̂,n ≡
∫ 1

−1
L♦n̂(x)L

∗′
n (x) dx, 0≤ n̂ ≤ N̂, 0≤ n ≤ N,
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define the hybrid matrixB♦∗ which has the following structure:

B♦∗ =

0
1
...

N̂



0 1 2 · · · N − 1 N

1

−1
. . .

−1

 .

The proof of this result is identical, up to the sign, to the one described forA∗♦.
Therefore, the right-hand side for the pressure problem, formulated in matrix form, reads

G = − 1

1t

[
B♦∗U M∗♦ + (M∗♦)T V(B♦∗)T

]
.

4.2. Pseudospectral Evaluation of the Nonlinear Term

The nonlinear term is evaluated according to Orszag’s pseudospectral technique. We
first consider the nonlinear termcN(x, y) = uN ·∇uN for the momentum equation inx
direction, expressed in weak formulation,

Cn,m =
(
L∗n(x)L

∗
m(y), cN(x, y)

)=(L∗n(x)L
∗
m(y), uN

∂uN

∂x

)
+
(

L∗n(x)L
∗
m(y), vN

∂uN

∂y

)
,

whereu = ux̂+ vŷ.
To determine the valuesCn,m of the L2 projection ofcN(x, y), one introduces first the

point values of the solutionuN andvN at the3
2(N + 1)× 3

2(N + 1)Gauss–Legendre points
in the square [−1, 1]2, as follows

uN(x, y)→ U ≡
{

uN(xh, yk), 1≤ (h, k) ≤ 3

2
(N + 1)

}
,

vN(x, y)→ V ≡
{
vN(xh, yk), 1≤ (h, k) ≤ 3

2
(N + 1)

}
,

and, similarly, the point values of the derivatives ofuN at the Gauss–Legendre integration
points

U(x) ≡
{
∂uN(xh, yk)

∂x
, 1≤ (h, k) ≤ 3

2
(N + 1)

}
,

U(y) ≡
{
∂uN(xh, yk)

∂y
, 1≤ (h, k) ≤ 3

2
(N + 1)

}
.

All these point values can be evaluated from the Legendre coefficient arraysU andV by
means of

U = L∗UL∗T , V = L∗VL∗T ,
U(x) = L∗′UL∗T , U(y) = L∗UL∗′T ,
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where we have introduced the matrices containing the point values of the basis functions
and of their derivatives at the same Gauss–Legendre points,

L∗ ≡
{
L∗h,n = L∗n(xh), 1≤ h ≤ 3

2
(N + 1), 0≤ n ≤ N

}
,

L∗′ ≡
{
L∗′h,n = L∗′n (xh), 1≤ h ≤ 3

2
(N + 1), 0≤ n ≤ N

}
.

The arrayC = {Ch,k,1≤ (h, k) ≤ 3
2(N + 1)} of the point values of the nonlinear term

cN(x, y) is obtained from the relation

C = U ?U(x) + V ?U(y),

where? denotes the element-by-element multiplication of matrices. As a consequence, the
pseudospectral approximation of the nonlinear term is obtained by projecting (in theL2

sense) this term by means of the direct-product Gauss–Legendre quadrature formula with
3
2(N + 1)× 3

2(N + 1) points, to give

∫ 1

−1

∫ 1

−1
L∗n(x), cN(x, y), L∗m(y) dx dy≈

3
2 (N+1)∑

h=1

L∗n(xh), wh, Ch,k, wk, L∗m(yk)

3
2 (N+1)

k=1

.

We emphasize that the number of points in the quadrature rule has been selected to avoid
aliasing errors, which could produce numerical instabilities at high Reynolds numbers [2].

The sought for matrixC = {Cn,m} of the L2 projection of the nonlinear term is finally
given by

C = L∗TWCWL∗,

where the Gauss–Legendre weights have been framed in the diagonal matrixW = diag
(w1, w2, . . . , w 3

2 (N+1)). The nonlinear termdN(x, y) = uN ·∇vN for the y component
of the momentum equation is evaluated by the same procedure. The expression of the
contribution of the nonlinear term to the right-hand side of the momentum equation is

Fnl = −ν−1L∗TW
[
U ?U (x) + V ?U (y)

]
WL∗,

where(U,V) = U = L∗UL∗T ,U (x) = L∗′UL∗T , andU (y) = L∗UL∗′T .

5. NUMERICAL RESULTS

5.1. Convergence Rate

To investigate the convergence properties of the spectral projection, we consider the test
problem whose analytical solution is

ux = −(cosx siny)g(t),

uy = (sinx cosy)g(t),

p = −1

4
[cos(2x)+ cos(2y)]g2(t),
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FIG. 2. Velocity (left) and pressure (right) fields for the analytical test case att = 1 for Re= 100.

on the squareÄ = (−1, 1)2. Introducing the velocity in the formu = ũ(x, y)g(t), the
source term corresponding to the momentum equation in the Navier–Stokes system reads
f = ũ(x, y)[g′(t)+ 2g(t)/Re]. The exact solution for this test case is shown in Fig. 2,
where the velocity and pressure fields are depicted on the left and on the right in the figure.

Two test cases with two differentg(t) functions have been performed in order to evaluate
the accuracy of the method in both space and time. For the space convergence case, an
exponential time dependence, asymptotically approaching a steady state, has been selected,
g(t) = 1− exp(−αt) with α = 4. Spatial convergence results for velocity and pressure at
time t = 200 are reported in Fig. 3 (left). Here, theL2(Ä) andH1(Ä) norms of the error,

FIG. 3. Space (left) and time (right) convergence rate for the second order BDF projection method.
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evaluated numerically by means of the Gaussian quadrature onN points, are displayed.
Spectral convergence is obtained for the two variables in both norms. For the time con-
vergence test, a sinusoidal time dependence has been employed,g(t) = sin(2t). Results
are presented in Fig. 3 (right) where thel∞(0, 1; L2(Ä)) and l∞(0, 1; H1(Ä)) norms of
the velocity and pressure error are reported: in this case velocity and pressure converge
with a second-order rate in both error norms. This result confirms the theoretical estimates
provided in [19]. Moreover, the convergence rate displayed by our computations is found
not to be corrupted even when the error is measured by norms that are stronger than those
considered by the theory.

5.2. Flow Stability in the Singular Driven Cavity

As a second test problem, the simulation of the flow in a square driven cavity is considered.
The solution of this problem presents some difficulties because of the singular nature of flow
in the regions of the upper corners, where the horizontal wall slides on the stationary vertical
walls. At these two points, the boundary value of the horizontal velocity is discontinuous
when passing from the fixed vertical walls to the moving horizontal one. As a consequence,
the solution of the unregularized problem is characterized by a singular behavior at these
points for any Reynolds number. However, the singular component of the solution can be
evaluated analytically by an asymptotic expansion described by Guptaet al.[22] and can be
subtracted from the unknowns to obtain a regular problem, as shown by Botella and Peyret
[11]. In the present work this technique has been adopted to avoid the occurrence of spatial
oscillations in the spectral solution caused by Gibbs’ phenomenon.

The time accuracy of the proposed methods is assessed by computing unsteady solu-
tions for an impulsive start of the wall (note that, in any case,n · b= 0, t ≥ 0) at Re =
1000. The vorticity field and the streamlines at timet = 6.25 computed by the BDF pro-
jection method are given in Fig. 4. The secondary eddy developing on the vertical wall
shown in Fig. 4 is identical in shape and intensity to that obtained by a spectral bihar-
monic solver based on the Glowinski–Pironneau method [3]. Moreover, the vorticity field
at same time is virtually indistinguishable from the corresponding solution provided by the

FIG. 4. Vorticity field and streamlines for the impulsively started driven cavity flow for Re= 1000 att = 6.25.
Solution computed by the BDF spectral projection method withN = 96 andN̂ = 94.
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FIG. 5. Differences between the value of the stream function in the center of the cavity att = 6.25 and
Re= 1000 for varying1t . Differences between values computed by different spectral projection methods (a
nonincremental scheme, a first-order incremental scheme and the proposed second-order BDF scheme) with the
reference values provided by aO((1t)2) accurate spectral biharmonic solver withN = 96 andN̂ = 94.

vorticity-stream function solver once the latter is associated with the aforementioned tech-
nique of singularity subtraction [5]. In Fig. 5 we compare the point value of the stream
function in the center of the cavity computed with the proposed projection methods with
the value obtained by the vorticity-stream function solver with a second-order BDF time
integration we have implemented. The differences shown in this figure between the results
of the BDF projection method and the reference values can be hardly commented.

The performance of the proposed algorithm, run on a Digital 433au workstation with 128
Mbytes of RAM memory, can be evaluated from the data in Table I where the CPU time in
seconds per time step is reported. In the same table, the CPU time per time step per mode
is also reported from which the efficiency of the method can be appreciated.

TABLE I

Performance of the Proposed Algorithm

N Cpu time per time step (s) Cpu time per time step per mode (s)

16 0.00278 1.0859× 10−5

32 0.01068 1.0430× 10−5

64 0.06376 1.5566× 10−5

128 0.38021 2.3206× 10−5
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FIG. 6. Total kinetic energy of the cavity flow with Re= 8125: complete time history (left) and asymptotic
periodic behavior,f = 0.450 (right).

FIG. 7. Streamlines of the periodic solution for Re= 8125 at four times separated by the time interval
T/4= 1/(4 f ) = 0.555.
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FIG. 8. Top right corner (detail).

By means of the proposed BDF spectral projection scheme, we have investigated the first
Hopf bifurcation of the flow in the singular driven cavity problem. The critical Reynolds
number for the first transition to a periodic flow has been precisely localized to be in the range
8017.6< Recrit < 8018.8 [1]. Just to give an idea of the accuracy permitted by the proposed
method in simulating unsteady flows, we present here the solution at a Reynolds number
Re = 8125 slightly above the bifurcation. For such a value, the asymptotic solution is periodic
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FIG. 9. Bottom right corner (detail).

with a frequencyf = 0.450. The oscillatory behavior is represented in Fig. 6 by means
of the time evolution of the kinetic energy of the regular component of the velocity field
integrated over the cavity. The asymptotic state of the flow is presented in Fig. 7 reporting
the streamlines at four times separated by the time intervalT/4= 1/(4 f ) = 0.555, which
corresponds to a complete cycle. The unsteady character of the flow is more evident in the
secondary eddies located in the top- and bottom-right corners, shown in the enlargement
given in Figs. 8 and 9, respectively.

6. CONCLUSIONS

In this paper we presented a new Galerkin–Legendre spectral implementation of the
second-order incremental scheme proposed and analysed in a discrete abstract functional
setting for both finite elements and spectral approximations in [18]–[21]. The convergence
properties of the scheme predicted by the theory are confirmed by the numerical tests shown
in the paper. Our tests indicate that the incremental projection method has a second-order
error, confirming that, also in the spectral case, the time-splitting error of this method is of
second order, which is not the case for its nonincremental counterpart.

The proposed spectral projection method adopts two different bases for the spatial ap-
proximation of the velocity and pressure fields but does not require the introduction of
any grid for the solution of the uncoupled linear subproblems provided by the fractional-
step strategy. In other words, in the new algorithm, all the linear terms are treated com-
pletely in the coefficients domain, without any transformation in or from the physical space.
Quite notably, most of the matrices representing the one-dimensional spatial differential



22 AUTERI AND PAROLINI

operators are banded and can be expressed in closed form so that the preprocessing phase of
the computation is indeed reduced to a minimal amount. As far as the nonlinear convective
terms are concerned, they are taken into account by means of a pseudospectral technique
based on Gauss–Legendre quadrature points. A quadrature formula with3

2 N points has
been selected to preclude aliasing errors. This possibility is offered by the noncollocative
nature of the method in which hierarchical polynomial bases are employed as opposed to
nodal Lagrangian interpolants.

A great simplification in the proposed approach is allowed by the elimination of the
end-of-step velocity with the associated need for solving mass matrix problems to determine
such a velocity. As a consequence, the proposed scheme is very easy to implement and
turn out to be very efficient, as shown by the tests performed in the paper. We reached
a very fast algorithm which allowed us to perform the long, time simulations required
to investigate the stability of the driven cavity flow [1] on an entry level workstation.
The same algorithm is currently extended straightforwardly to deal with three-dimensional
problems, and the same projection scheme has been recently implemented with spectral/p
elements [6].
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